vllm.model_executor.models.step1 ¶
Shared Step decoder blocks and the Step1 text model.
STEP_PACKED_MODULES_MAPPING module-attribute ¶
STEP_PACKED_MODULES_MAPPING = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
Step1ForCausalLM ¶
Bases: Module, SupportsPP
Source code in vllm/model_executor/models/step1.py
lm_head instance-attribute ¶
lm_head = ParallelLMHead(
vocab_size,
hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
make_empty_intermediate_tensors instance-attribute ¶
model instance-attribute ¶
model = StepDecoderModel(
vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"),
)
packed_modules_mapping class-attribute instance-attribute ¶
packed_modules_mapping = STEP_PACKED_MODULES_MAPPING
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/step1.py
compute_logits ¶
embed_input_ids ¶
forward ¶
forward(
input_ids: LongTensor | None,
positions: Tensor,
intermediate_tensors: IntermediateTensors | None,
inputs_embeds: Tensor | None = None,
) -> (
Tensor
| IntermediateTensors
| tuple[Tensor, list[Tensor]]
)
Source code in vllm/model_executor/models/step1.py
StepAttention ¶
Bases: Module
Source code in vllm/model_executor/models/step1.py
attn instance-attribute ¶
attn = Attention(
num_heads,
head_dim,
scale,
num_kv_heads=num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
alibi_slopes=alibi_slopes,
prefix=f"{prefix}.attn",
use_alibi_sqrt=True,
attn_type=DECODER,
)
o_proj instance-attribute ¶
o_proj = RowParallelLinear(
input_size=total_num_heads * head_dim,
output_size=hidden_size,
bias=getattr(config, "attention_bias", False),
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
qkv_proj instance-attribute ¶
qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=head_dim,
total_num_heads=total_num_heads,
total_num_kv_heads=total_num_kv_heads,
bias=getattr(config, "attention_bias", False),
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
__init__ ¶
__init__(
config,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
)
Source code in vllm/model_executor/models/step1.py
forward ¶
Source code in vllm/model_executor/models/step1.py
StepDecoderLayer ¶
Bases: Module
Source code in vllm/model_executor/models/step1.py
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | |
mlp instance-attribute ¶
mlp = StepMLP(
hidden_size=hidden_size,
intermediate_size=intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
bias=getattr(config, "mlp_bias", False),
)
post_attention_layernorm instance-attribute ¶
post_attention_layernorm = RMSNorm(
hidden_size, eps=rms_norm_eps
)
self_attn instance-attribute ¶
self_attn = StepAttention(
config=config,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
__init__ ¶
__init__(vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/step1.py
forward ¶
forward(
positions: Tensor,
hidden_states: Tensor,
residual: Tensor | None,
) -> tuple[Tensor, Tensor]
Source code in vllm/model_executor/models/step1.py
load_weights ¶
Source code in vllm/model_executor/models/step1.py
StepDecoderModel ¶
Bases: Module
Source code in vllm/model_executor/models/step1.py
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | |
aux_hidden_state_layers instance-attribute ¶
embed_tokens instance-attribute ¶
embed_tokens = VocabParallelEmbedding(
vocab_size, hidden_size, quant_config=quant_config
)
make_empty_intermediate_tensors instance-attribute ¶
make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], hidden_size
)
)
__init__ ¶
__init__(*, vllm_config: VllmConfig, prefix: str = '')
Source code in vllm/model_executor/models/step1.py
embed_input_ids ¶
forward ¶
forward(
input_ids: Tensor | None,
positions: Tensor,
intermediate_tensors: IntermediateTensors | None,
inputs_embeds: Tensor | None = None,
) -> (
Tensor
| IntermediateTensors
| tuple[Tensor, list[Tensor]]
)
Source code in vllm/model_executor/models/step1.py
StepMLP ¶
Bases: Module
Source code in vllm/model_executor/models/step1.py
down_proj instance-attribute ¶
down_proj = RowParallelLinear(
input_size=intermediate_size,
output_size=hidden_size,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
gate_up_proj instance-attribute ¶
gate_up_proj = MergedColumnParallelLinear(
input_size=hidden_size,
output_sizes=[intermediate_size, intermediate_size],
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
__init__ ¶
__init__(
hidden_size: int,
intermediate_size: int,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
bias: bool = False,
)
Source code in vllm/model_executor/models/step1.py
_get_step_alibi_slopes ¶
Reference ALiBi slopes used by Step models.