Skip to content

vllm.entrypoints.pooling.embed.protocol

EmbeddingRequest module-attribute

EmbeddingBytesResponse

Bases: OpenAIBaseModel

Source code in vllm/entrypoints/pooling/embed/protocol.py
class EmbeddingBytesResponse(OpenAIBaseModel):
    content: list[bytes]
    headers: dict[str, str] | None = None
    media_type: str = "application/octet-stream"

content instance-attribute

content: list[bytes]

headers class-attribute instance-attribute

headers: dict[str, str] | None = None

media_type class-attribute instance-attribute

media_type: str = 'application/octet-stream'

EmbeddingChatRequest

Bases: PoolingBasicRequestMixin, ChatRequestMixin, EmbedRequestMixin

Source code in vllm/entrypoints/pooling/embed/protocol.py
class EmbeddingChatRequest(
    PoolingBasicRequestMixin, ChatRequestMixin, EmbedRequestMixin
):
    mm_processor_kwargs: dict[str, Any] | None = Field(
        default=None,
        description=("Additional kwargs to pass to the HF processor."),
    )

mm_processor_kwargs class-attribute instance-attribute

mm_processor_kwargs: dict[str, Any] | None = Field(
    default=None,
    description="Additional kwargs to pass to the HF processor.",
)

EmbeddingCompletionRequest

Bases: PoolingBasicRequestMixin, CompletionRequestMixin, EmbedRequestMixin

Source code in vllm/entrypoints/pooling/embed/protocol.py
class EmbeddingCompletionRequest(
    PoolingBasicRequestMixin, CompletionRequestMixin, EmbedRequestMixin
):
    # Ordered by official OpenAI API documentation
    # https://platform.openai.com/docs/api-reference/embeddings
    pass

EmbeddingResponse

Bases: OpenAIBaseModel

Source code in vllm/entrypoints/pooling/embed/protocol.py
class EmbeddingResponse(OpenAIBaseModel):
    id: str = Field(default_factory=lambda: f"embd-{random_uuid()}")
    object: str = "list"
    created: int = Field(default_factory=lambda: int(time.time()))
    model: str
    data: list[EmbeddingResponseData]
    usage: UsageInfo

created class-attribute instance-attribute

created: int = Field(default_factory=lambda: int(time()))

data instance-attribute

id class-attribute instance-attribute

id: str = Field(
    default_factory=lambda: f"embd-{random_uuid()}"
)

model instance-attribute

model: str

object class-attribute instance-attribute

object: str = 'list'

usage instance-attribute

usage: UsageInfo

EmbeddingResponseData

Bases: OpenAIBaseModel

Source code in vllm/entrypoints/pooling/embed/protocol.py
class EmbeddingResponseData(OpenAIBaseModel):
    index: int
    object: str = "embedding"
    embedding: list[float] | str

embedding instance-attribute

embedding: list[float] | str

index instance-attribute

index: int

object class-attribute instance-attribute

object: str = 'embedding'