vllm.entrypoints.pooling.base.protocol ¶
ChatRequestMixin ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/pooling/base/protocol.py
add_generation_prompt class-attribute instance-attribute ¶
add_generation_prompt: bool = Field(
default=False,
description="If true, the generation prompt will be added to the chat template. This is a parameter used by chat template in tokenizer config of the model.",
)
add_special_tokens class-attribute instance-attribute ¶
add_special_tokens: bool = Field(
default=False,
description="If true, special tokens (e.g. BOS) will be added to the prompt on top of what is added by the chat template. For most models, the chat template takes care of adding the special tokens so this should be set to false (as is the default).",
)
chat_template class-attribute instance-attribute ¶
chat_template: str | None = Field(
default=None,
description="A Jinja template to use for this conversion. As of transformers v4.44, default chat template is no longer allowed, so you must provide a chat template if the tokenizer does not define one.",
)
chat_template_kwargs class-attribute instance-attribute ¶
chat_template_kwargs: dict[str, Any] | None = Field(
default=None,
description="Additional keyword args to pass to the template renderer. Will be accessible by the chat template.",
)
continue_final_message class-attribute instance-attribute ¶
continue_final_message: bool = Field(
default=False,
description='If this is set, the chat will be formatted so that the final message in the chat is open-ended, without any EOS tokens. The model will continue this message rather than starting a new one. This allows you to "prefill" part of the model\'s response for it. Cannot be used at the same time as `add_generation_prompt`.',
)
check_generation_prompt classmethod ¶
Source code in vllm/entrypoints/pooling/base/protocol.py
ClassifyRequestMixin ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/pooling/base/protocol.py
activation class-attribute instance-attribute ¶
activation: bool | None = Field(
default=None,
description="activation will be deprecated, please use use_activation instead.",
)
softmax class-attribute instance-attribute ¶
softmax: bool | None = Field(
default=None,
description="softmax will be deprecated, please use use_activation instead.",
)
CompletionRequestMixin ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/pooling/base/protocol.py
EmbedRequestMixin ¶
Bases: EncodingRequestMixin
Source code in vllm/entrypoints/pooling/base/protocol.py
EncodingRequestMixin ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/pooling/base/protocol.py
embed_dtype class-attribute instance-attribute ¶
embed_dtype: EmbedDType = Field(
default="float32",
description="What dtype to use for encoding. Default to using float32 for base64 encoding to match the OpenAI python client behavior. This parameter will affect base64 and binary_response.",
)
endianness class-attribute instance-attribute ¶
endianness: Endianness = Field(
default="native",
description="What endianness to use for encoding. Default to using native for base64 encoding to match the OpenAI python client behavior.This parameter will affect base64 and binary_response.",
)
PoolingBasicRequestMixin ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/pooling/base/protocol.py
priority class-attribute instance-attribute ¶
priority: int = Field(
default=0,
description="The priority of the request (lower means earlier handling; default: 0). Any priority other than 0 will raise an error if the served model does not use priority scheduling.",
)
request_id class-attribute instance-attribute ¶
request_id: str = Field(
default_factory=random_uuid,
description="The request_id related to this request. If the caller does not set it, a random_uuid will be generated. This id is used through out the inference process and return in response.",
)