vllm.entrypoints.openai.completion.protocol ¶
CompletionLogProbs ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/openai/completion/protocol.py
CompletionRequest ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/openai/completion/protocol.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | |
_DEFAULT_SAMPLING_PARAMS class-attribute instance-attribute ¶
_DEFAULT_SAMPLING_PARAMS: dict = {
"repetition_penalty": 1.0,
"temperature": 1.0,
"top_p": 1.0,
"top_k": 0,
"min_p": 0.0,
}
add_special_tokens class-attribute instance-attribute ¶
add_special_tokens: bool = Field(
default=True,
description="If true (the default), special tokens (e.g. BOS) will be added to the prompt.",
)
cache_salt class-attribute instance-attribute ¶
cache_salt: str | None = Field(
default=None,
description="If specified, the prefix cache will be salted with the provided string to prevent an attacker to guess prompts in multi-user environments. The salt should be random, protected from access by 3rd parties, and long enough to be unpredictable (e.g., 43 characters base64-encoded, corresponding to 256 bit).",
)
include_stop_str_in_output class-attribute instance-attribute ¶
include_stop_str_in_output: bool = False
kv_transfer_params class-attribute instance-attribute ¶
kv_transfer_params: dict[str, Any] | None = Field(
default=None,
description="KVTransfer parameters used for disaggregated serving.",
)
logits_processors class-attribute instance-attribute ¶
logits_processors: LogitsProcessors | None = Field(
default=None,
description="A list of either qualified names of logits processors, or constructor objects, to apply when sampling. A constructor is a JSON object with a required 'qualname' field specifying the qualified name of the processor class/factory, and optional 'args' and 'kwargs' fields containing positional and keyword arguments. For example: {'qualname': 'my_module.MyLogitsProcessor', 'args': [1, 2], 'kwargs': {'param': 'value'}}.",
)
priority class-attribute instance-attribute ¶
priority: int = Field(
default=0,
description="The priority of the request (lower means earlier handling; default: 0). Any priority other than 0 will raise an error if the served model does not use priority scheduling.",
)
prompt class-attribute instance-attribute ¶
request_id class-attribute instance-attribute ¶
request_id: str = Field(
default_factory=random_uuid,
description="The request_id related to this request. If the caller does not set it, a random_uuid will be generated. This id is used through out the inference process and return in response.",
)
response_format class-attribute instance-attribute ¶
response_format: AnyResponseFormat | None = Field(
default=None,
description="Similar to chat completion, this parameter specifies the format of output. Only {'type': 'json_object'}, {'type': 'json_schema'}, {'type': 'structural_tag'}, or {'type': 'text' } is supported.",
)
return_token_ids class-attribute instance-attribute ¶
return_token_ids: bool | None = Field(
default=None,
description="If specified, the result will include token IDs alongside the generated text. In streaming mode, prompt_token_ids is included only in the first chunk, and token_ids contains the delta tokens for each chunk. This is useful for debugging or when you need to map generated text back to input tokens.",
)
return_tokens_as_token_ids class-attribute instance-attribute ¶
return_tokens_as_token_ids: bool | None = Field(
default=None,
description="If specified with 'logprobs', tokens are represented as strings of the form 'token_id:{token_id}' so that tokens that are not JSON-encodable can be identified.",
)
spaces_between_special_tokens class-attribute instance-attribute ¶
spaces_between_special_tokens: bool = True
structured_outputs class-attribute instance-attribute ¶
structured_outputs: StructuredOutputsParams | None = Field(
default=None,
description="Additional kwargs for structured outputs",
)
truncate_prompt_tokens class-attribute instance-attribute ¶
vllm_xargs class-attribute instance-attribute ¶
vllm_xargs: dict[str, str | int | float] | None = Field(
default=None,
description="Additional request parameters with string or numeric values, used by custom extensions.",
)
check_cache_salt_support classmethod ¶
Source code in vllm/entrypoints/openai/completion/protocol.py
check_logprobs classmethod ¶
Source code in vllm/entrypoints/openai/completion/protocol.py
check_structured_outputs_count classmethod ¶
Source code in vllm/entrypoints/openai/completion/protocol.py
to_beam_search_params ¶
to_beam_search_params(
max_tokens: int,
default_sampling_params: dict | None = None,
) -> BeamSearchParams
Source code in vllm/entrypoints/openai/completion/protocol.py
to_sampling_params ¶
to_sampling_params(
max_tokens: int,
logits_processor_pattern: str | None,
default_sampling_params: dict | None = None,
) -> SamplingParams
Source code in vllm/entrypoints/openai/completion/protocol.py
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | |
validate_prompt_and_prompt_embeds classmethod ¶
Source code in vllm/entrypoints/openai/completion/protocol.py
validate_stream_options classmethod ¶
Source code in vllm/entrypoints/openai/completion/protocol.py
CompletionResponse ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/openai/completion/protocol.py
created class-attribute instance-attribute ¶
id class-attribute instance-attribute ¶
id: str = Field(
default_factory=lambda: f"cmpl-{random_uuid()}"
)
kv_transfer_params class-attribute instance-attribute ¶
kv_transfer_params: dict[str, Any] | None = Field(
default=None, description="KVTransfer parameters."
)
CompletionResponseChoice ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/openai/completion/protocol.py
prompt_logprobs class-attribute instance-attribute ¶
CompletionResponseStreamChoice ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/openai/completion/protocol.py
CompletionStreamResponse ¶
Bases: OpenAIBaseModel
Source code in vllm/entrypoints/openai/completion/protocol.py
created class-attribute instance-attribute ¶
id class-attribute instance-attribute ¶
id: str = Field(
default_factory=lambda: f"cmpl-{random_uuid()}"
)