Skip to content

vllm.compilation.caching

logger module-attribute

logger = init_logger(__name__)

StandaloneCompiledArtifacts

Storage for standalone compiled artifacts with content-based deduplication.

Deduplication works via a two-level indirection: 1. submodule_bytes maps "{submod_name}_{shape}" -> SHA256 hash 2. submodule_bytes_store maps SHA256 hash -> actual bytes

When inserting, we compute the SHA256 hash of the bytes. If the hash already exists in submodule_bytes_store, we reuse the existing entry rather than storing duplicate bytes. This is common because submodules often compile to identical artifacts (e.g., identical transformer layers split on attn)

Source code in vllm/compilation/caching.py
class StandaloneCompiledArtifacts:
    """Storage for standalone compiled artifacts with content-based deduplication.

    Deduplication works via a two-level indirection:
    1. `submodule_bytes` maps "{submod_name}_{shape}" -> SHA256 hash
    2. `submodule_bytes_store` maps SHA256 hash -> actual bytes

    When inserting, we compute the SHA256 hash of the bytes. If the hash
    already exists in `submodule_bytes_store`, we reuse the existing entry
    rather than storing duplicate bytes. This is common because submodules
    often compile to identical artifacts (e.g., identical transformer layers
    split on attn)
    """

    def __init__(self) -> None:
        # dict from submodule name to byte hash
        self.submodule_bytes: dict[str, str] = {}
        # dict from byte hash to bytes
        self.submodule_bytes_store: dict[str, bytes] = {}
        # dict from byte hash to loaded module
        self.loaded_submodule_store: dict[str, Any] = {}

    def insert(self, submod_name: str, shape: str, entry: bytes) -> None:
        hasher = hashlib.sha256()
        hasher.update(entry)
        hex_digest = hasher.hexdigest()
        self.submodule_bytes[f"{submod_name}_{shape}"] = hex_digest
        if hex_digest not in self.submodule_bytes_store:
            self.submodule_bytes_store[hex_digest] = entry
            logger.debug(
                "inserting new artifact for submod %s with shape %s "
                "(%s bytes) at hash %s",
                submod_name,
                shape,
                len(entry),
                hex_digest,
            )
        else:
            logger.debug(
                "reusing existing cache artifact for submod %s "
                "with shape %s (%s bytes) at hash %s",
                submod_name,
                shape,
                len(entry),
                hex_digest,
            )

    def get(self, submod_name: str, shape: str) -> bytes:
        logger.debug(
            "getting artifact for submod %s with shape %s",
            submod_name,
            shape,
        )
        return self.submodule_bytes_store[
            self.submodule_bytes[f"{submod_name}_{shape}"]
        ]

    def get_loaded(self, submod_name: str, shape: str) -> Any:
        logger.debug(
            "getting artifact for submod %s with shape %s",
            submod_name,
            shape,
        )
        return self.loaded_submodule_store[
            self.submodule_bytes[f"{submod_name}_{shape}"]
        ]

    def size_bytes(self) -> int:
        return sum(len(entry) for entry in self.submodule_bytes_store.values())

    def num_artifacts(self) -> int:
        return len(self.submodule_bytes_store)

    def num_entries(self) -> int:
        return len(self.submodule_bytes)

    def submodule_names(self) -> list[str]:
        # get unique "{submod_name}" from "{submod_name}_{shape}", preserving order
        names = [cache_key.rsplit("_", 1)[0] for cache_key in self.submodule_bytes]
        return list(dict.fromkeys(names))

    def load_all(self) -> None:
        import concurrent.futures

        # check already loaded
        if len(self.loaded_submodule_store) == len(self.submodule_bytes_store):
            return

        from torch._inductor.standalone_compile import AOTCompiledArtifact

        def _load_entry(entry_bytes: bytes) -> AOTCompiledArtifact:
            entry = pickle.loads(entry_bytes)
            return AOTCompiledArtifact.deserialize(entry)

        with concurrent.futures.ThreadPoolExecutor() as executor:
            entries = list(self.submodule_bytes_store.values())
            loaded_entries = list(executor.map(_load_entry, entries))

        for i, k in enumerate(self.submodule_bytes_store.keys()):
            self.loaded_submodule_store[k] = loaded_entries[i]

        logger.debug("loaded all %s submodules", self.num_artifacts())

    def __getstate__(self) -> dict[str, dict[str, str] | dict[str, bytes]]:
        return {
            "submodule_bytes": self.submodule_bytes,
            "submodule_bytes_store": self.submodule_bytes_store,
        }

    def __setstate__(self, state: dict[str, dict[str, Any]]) -> None:
        self.submodule_bytes = state["submodule_bytes"]
        self.submodule_bytes_store = state["submodule_bytes_store"]
        self.loaded_submodule_store = {}

loaded_submodule_store instance-attribute

loaded_submodule_store: dict[str, Any] = {}

submodule_bytes instance-attribute

submodule_bytes: dict[str, str] = {}

submodule_bytes_store instance-attribute

submodule_bytes_store: dict[str, bytes] = {}

__getstate__

__getstate__() -> dict[
    str, dict[str, str] | dict[str, bytes]
]
Source code in vllm/compilation/caching.py
def __getstate__(self) -> dict[str, dict[str, str] | dict[str, bytes]]:
    return {
        "submodule_bytes": self.submodule_bytes,
        "submodule_bytes_store": self.submodule_bytes_store,
    }

__init__

__init__() -> None
Source code in vllm/compilation/caching.py
def __init__(self) -> None:
    # dict from submodule name to byte hash
    self.submodule_bytes: dict[str, str] = {}
    # dict from byte hash to bytes
    self.submodule_bytes_store: dict[str, bytes] = {}
    # dict from byte hash to loaded module
    self.loaded_submodule_store: dict[str, Any] = {}

__setstate__

__setstate__(state: dict[str, dict[str, Any]]) -> None
Source code in vllm/compilation/caching.py
def __setstate__(self, state: dict[str, dict[str, Any]]) -> None:
    self.submodule_bytes = state["submodule_bytes"]
    self.submodule_bytes_store = state["submodule_bytes_store"]
    self.loaded_submodule_store = {}

get

get(submod_name: str, shape: str) -> bytes
Source code in vllm/compilation/caching.py
def get(self, submod_name: str, shape: str) -> bytes:
    logger.debug(
        "getting artifact for submod %s with shape %s",
        submod_name,
        shape,
    )
    return self.submodule_bytes_store[
        self.submodule_bytes[f"{submod_name}_{shape}"]
    ]

get_loaded

get_loaded(submod_name: str, shape: str) -> Any
Source code in vllm/compilation/caching.py
def get_loaded(self, submod_name: str, shape: str) -> Any:
    logger.debug(
        "getting artifact for submod %s with shape %s",
        submod_name,
        shape,
    )
    return self.loaded_submodule_store[
        self.submodule_bytes[f"{submod_name}_{shape}"]
    ]

insert

insert(submod_name: str, shape: str, entry: bytes) -> None
Source code in vllm/compilation/caching.py
def insert(self, submod_name: str, shape: str, entry: bytes) -> None:
    hasher = hashlib.sha256()
    hasher.update(entry)
    hex_digest = hasher.hexdigest()
    self.submodule_bytes[f"{submod_name}_{shape}"] = hex_digest
    if hex_digest not in self.submodule_bytes_store:
        self.submodule_bytes_store[hex_digest] = entry
        logger.debug(
            "inserting new artifact for submod %s with shape %s "
            "(%s bytes) at hash %s",
            submod_name,
            shape,
            len(entry),
            hex_digest,
        )
    else:
        logger.debug(
            "reusing existing cache artifact for submod %s "
            "with shape %s (%s bytes) at hash %s",
            submod_name,
            shape,
            len(entry),
            hex_digest,
        )

load_all

load_all() -> None
Source code in vllm/compilation/caching.py
def load_all(self) -> None:
    import concurrent.futures

    # check already loaded
    if len(self.loaded_submodule_store) == len(self.submodule_bytes_store):
        return

    from torch._inductor.standalone_compile import AOTCompiledArtifact

    def _load_entry(entry_bytes: bytes) -> AOTCompiledArtifact:
        entry = pickle.loads(entry_bytes)
        return AOTCompiledArtifact.deserialize(entry)

    with concurrent.futures.ThreadPoolExecutor() as executor:
        entries = list(self.submodule_bytes_store.values())
        loaded_entries = list(executor.map(_load_entry, entries))

    for i, k in enumerate(self.submodule_bytes_store.keys()):
        self.loaded_submodule_store[k] = loaded_entries[i]

    logger.debug("loaded all %s submodules", self.num_artifacts())

num_artifacts

num_artifacts() -> int
Source code in vllm/compilation/caching.py
def num_artifacts(self) -> int:
    return len(self.submodule_bytes_store)

num_entries

num_entries() -> int
Source code in vllm/compilation/caching.py
def num_entries(self) -> int:
    return len(self.submodule_bytes)

size_bytes

size_bytes() -> int
Source code in vllm/compilation/caching.py
def size_bytes(self) -> int:
    return sum(len(entry) for entry in self.submodule_bytes_store.values())

submodule_names

submodule_names() -> list[str]
Source code in vllm/compilation/caching.py
def submodule_names(self) -> list[str]:
    # get unique "{submod_name}" from "{submod_name}_{shape}", preserving order
    names = [cache_key.rsplit("_", 1)[0] for cache_key in self.submodule_bytes]
    return list(dict.fromkeys(names))

VllmSerializableFunction

Bases: SerializableCallable

A wrapper around a compiled function by vllm. It will forward the tensor inputs to the compiled function and return the result. It also implements a serialization interface to support PyTorch's precompile with custom backend, so that we can save and load the compiled function on disk. There's no need to wrap around the compiled function if we don't want to serialize them in particular cases. Right now serialization for the custom backend is done via serializing the Dynamo fx graph plus example inputs.

Source code in vllm/compilation/caching.py
class VllmSerializableFunction(SerializableCallable):  # type: ignore[misc]
    """
    A wrapper around a compiled function by vllm. It will forward the tensor
    inputs to the compiled function and return the result.
    It also implements a serialization interface to support PyTorch's precompile
    with custom backend, so that we can save and load the compiled function on
    disk. There's no need to wrap around the compiled function if we don't want
    to serialize them in particular cases.
    Right now serialization for the custom backend is done via
    serializing the Dynamo fx graph plus example inputs.
    """

    def __init__(
        self,
        graph_module: torch.fx.GraphModule,
        example_inputs: Sequence[Any],
        prefix: str,
        optimized_call: Callable[..., Any],
        is_encoder: bool = False,
        vllm_backend: Any | None = None,
        sym_tensor_indices: list[int] | None = None,
    ) -> None:
        assert isinstance(graph_module, torch.fx.GraphModule)
        self.graph_module = graph_module
        self.example_inputs = example_inputs
        self.prefix = prefix
        self.optimized_call = optimized_call
        self.is_encoder = is_encoder
        self.shape_env = None
        self.vllm_backend = vllm_backend
        self.sym_tensor_indices = sym_tensor_indices
        sym_input = next(
            (i for i in self.example_inputs if isinstance(i, torch.SymInt)), None
        )
        if sym_input is not None:
            self.shape_env = sym_input.node.shape_env

    def __call__(self, *args: Any, **kwargs: Any) -> Any:
        return self.optimized_call(*args, **kwargs)

    @classmethod
    def serialize_compile_artifacts(
        cls, compiled_fn: "VllmSerializableFunction"
    ) -> bytes:
        import sympy
        from torch._subclasses import FakeTensorMode
        from torch.fx._graph_pickler import GraphPickler, Options

        state = compiled_fn.__dict__.copy()
        state.pop("optimized_call")
        state.pop("shape_env")
        state.pop("vllm_backend", None)
        for node in state["graph_module"].graph.nodes:
            node.meta.pop("source_fn_stack", None)
            node.meta.pop("nn_module_stack", None)
        for name, submod in state["graph_module"].named_children():
            if hasattr(submod, "graph"):
                for node in submod.graph.nodes:
                    node.meta.pop("source_fn_stack", None)
                    node.meta.pop("nn_module_stack", None)

        graph_reducer_override = GraphPickler.reducer_override

        def _graph_reducer_override(
            self: GraphPickler, obj: Any
        ) -> tuple[Callable[..., Any], tuple[Any, ...]] | Any:
            if (
                inspect.isclass(obj)
                and issubclass(obj, sympy.Function)
                and hasattr(obj, "_torch_unpickler")
            ):
                return obj._torch_unpickler, (obj._torch_handler_name,)
            if isinstance(obj, FakeTensorMode):
                return type(None), ()
            return graph_reducer_override(self, obj)

        if state.get("sym_tensor_indices"):
            # put tensor inputs on meta device since their data
            # isn't needed, yet we need the meta for make_copy_and_call
            state["example_inputs"] = pytree.tree_map_only(
                torch.Tensor,
                lambda inp: torch.empty_like(inp, device="meta"),
                state["example_inputs"],
            )
        else:
            # mask off all tensor inputs since they are large and not needed.
            state["example_inputs"] = pytree.tree_map_only(
                torch.Tensor,
                lambda inp: torch.empty_like(inp, device="meta"),
                state["example_inputs"],
            )
        with patch.object(GraphPickler, "reducer_override", _graph_reducer_override):
            state["graph_module"] = GraphPickler.dumps(
                state["graph_module"], Options(ops_filter=None)
            )
            state["example_inputs"] = GraphPickler.dumps(state["example_inputs"])

        if compiled_fn.vllm_backend:
            (
                standalone_compile_artifacts,
                sym_shape_indices_map,
                returns_tuple_map,
            ) = compiled_fn.vllm_backend.collect_standalone_compile_artifacts()
            state["standalone_compile_artifacts"] = standalone_compile_artifacts
            state["sym_shape_indices_map"] = sym_shape_indices_map
            state["returns_tuple_map"] = returns_tuple_map
        return pickle.dumps(state)

    @classmethod
    def deserialize_compile_artifacts(cls, data: bytes) -> "VllmSerializableFunction":
        from torch._guards import TracingContext, tracing
        from torch._subclasses import FakeTensorMode
        from torch.fx._graph_pickler import GraphPickler
        from torch.fx.experimental.symbolic_shapes import ShapeEnv

        state = pickle.loads(data)
        fake_mode = FakeTensorMode(shape_env=ShapeEnv())
        state["graph_module"] = GraphPickler.loads(state["graph_module"], fake_mode)
        state["graph_module"].recompile()
        state["example_inputs"] = GraphPickler.loads(state["example_inputs"], fake_mode)

        standalone_compile_artifacts = state.pop("standalone_compile_artifacts", None)
        sym_shape_indices_map = state.pop("sym_shape_indices_map", {})
        returns_tuple_map = state.pop("returns_tuple_map", {})

        if envs.VLLM_USE_MEGA_AOT_ARTIFACT:
            assert standalone_compile_artifacts is not None
            submod_names = standalone_compile_artifacts.submodule_names()
            num_submods = len(submod_names)
            num_artifacts = standalone_compile_artifacts.num_artifacts()

            logger.info(
                "reconstructing serializable fn from standalone compile "
                "artifacts. num_artifacts=%d num_submods=%d",
                num_artifacts,
                num_submods,
            )

            fn = reconstruct_serializable_fn_from_mega_artifact(
                state=state,
                standalone_compile_artifacts=standalone_compile_artifacts,
                vllm_config=get_current_vllm_config(),
                sym_shape_indices_map=sym_shape_indices_map,
                returns_tuple_map=returns_tuple_map,
            )

            logger.info(
                "reconstructed serializable fn from standalone compile artifacts"
            )

            return fn

        # Fall back to standard VllmBackend
        from vllm.compilation.backends import VllmBackend

        is_encoder = state.get("is_encoder", False)
        vllm_backend: VllmBackend = VllmBackend(
            get_current_vllm_config(), state["prefix"], is_encoder
        )

        def optimized_call(*example_inputs: Any) -> Any:
            """
            On the first run of the optimized call, we rerun the compiler
            backend which should result in a cache hit. After the backend
            call returns, we just do a one-time replacement of the optimized
            call with the compiled function, so that subsequent calls are on
            the AOT compiled path.
            """
            compile_inputs = [
                inp if inp is not None else example_inputs[i]
                for i, inp in enumerate(fn.example_inputs)
            ]
            with tracing(TracingContext(fake_mode)):
                fn.optimized_call = vllm_backend(
                    state["graph_module"], compile_inputs
                ).optimized_call
            return fn.optimized_call(*example_inputs)

        fn = cls(**state, optimized_call=optimized_call)
        return fn

    @property
    def co_name(self) -> Literal["VllmSerializableFunction"]:
        """
        Used for depyf debugging.
        """
        return "VllmSerializableFunction"

co_name property

co_name: Literal['VllmSerializableFunction']

Used for depyf debugging.

example_inputs instance-attribute

example_inputs = example_inputs

graph_module instance-attribute

graph_module = graph_module

is_encoder instance-attribute

is_encoder = is_encoder

optimized_call instance-attribute

optimized_call = optimized_call

prefix instance-attribute

prefix = prefix

shape_env instance-attribute

shape_env = None

sym_tensor_indices instance-attribute

sym_tensor_indices = sym_tensor_indices

vllm_backend instance-attribute

vllm_backend = vllm_backend

__call__

__call__(*args: Any, **kwargs: Any) -> Any
Source code in vllm/compilation/caching.py
def __call__(self, *args: Any, **kwargs: Any) -> Any:
    return self.optimized_call(*args, **kwargs)

__init__

__init__(
    graph_module: GraphModule,
    example_inputs: Sequence[Any],
    prefix: str,
    optimized_call: Callable[..., Any],
    is_encoder: bool = False,
    vllm_backend: Any | None = None,
    sym_tensor_indices: list[int] | None = None,
) -> None
Source code in vllm/compilation/caching.py
def __init__(
    self,
    graph_module: torch.fx.GraphModule,
    example_inputs: Sequence[Any],
    prefix: str,
    optimized_call: Callable[..., Any],
    is_encoder: bool = False,
    vllm_backend: Any | None = None,
    sym_tensor_indices: list[int] | None = None,
) -> None:
    assert isinstance(graph_module, torch.fx.GraphModule)
    self.graph_module = graph_module
    self.example_inputs = example_inputs
    self.prefix = prefix
    self.optimized_call = optimized_call
    self.is_encoder = is_encoder
    self.shape_env = None
    self.vllm_backend = vllm_backend
    self.sym_tensor_indices = sym_tensor_indices
    sym_input = next(
        (i for i in self.example_inputs if isinstance(i, torch.SymInt)), None
    )
    if sym_input is not None:
        self.shape_env = sym_input.node.shape_env

deserialize_compile_artifacts classmethod

deserialize_compile_artifacts(
    data: bytes,
) -> VllmSerializableFunction
Source code in vllm/compilation/caching.py
@classmethod
def deserialize_compile_artifacts(cls, data: bytes) -> "VllmSerializableFunction":
    from torch._guards import TracingContext, tracing
    from torch._subclasses import FakeTensorMode
    from torch.fx._graph_pickler import GraphPickler
    from torch.fx.experimental.symbolic_shapes import ShapeEnv

    state = pickle.loads(data)
    fake_mode = FakeTensorMode(shape_env=ShapeEnv())
    state["graph_module"] = GraphPickler.loads(state["graph_module"], fake_mode)
    state["graph_module"].recompile()
    state["example_inputs"] = GraphPickler.loads(state["example_inputs"], fake_mode)

    standalone_compile_artifacts = state.pop("standalone_compile_artifacts", None)
    sym_shape_indices_map = state.pop("sym_shape_indices_map", {})
    returns_tuple_map = state.pop("returns_tuple_map", {})

    if envs.VLLM_USE_MEGA_AOT_ARTIFACT:
        assert standalone_compile_artifacts is not None
        submod_names = standalone_compile_artifacts.submodule_names()
        num_submods = len(submod_names)
        num_artifacts = standalone_compile_artifacts.num_artifacts()

        logger.info(
            "reconstructing serializable fn from standalone compile "
            "artifacts. num_artifacts=%d num_submods=%d",
            num_artifacts,
            num_submods,
        )

        fn = reconstruct_serializable_fn_from_mega_artifact(
            state=state,
            standalone_compile_artifacts=standalone_compile_artifacts,
            vllm_config=get_current_vllm_config(),
            sym_shape_indices_map=sym_shape_indices_map,
            returns_tuple_map=returns_tuple_map,
        )

        logger.info(
            "reconstructed serializable fn from standalone compile artifacts"
        )

        return fn

    # Fall back to standard VllmBackend
    from vllm.compilation.backends import VllmBackend

    is_encoder = state.get("is_encoder", False)
    vllm_backend: VllmBackend = VllmBackend(
        get_current_vllm_config(), state["prefix"], is_encoder
    )

    def optimized_call(*example_inputs: Any) -> Any:
        """
        On the first run of the optimized call, we rerun the compiler
        backend which should result in a cache hit. After the backend
        call returns, we just do a one-time replacement of the optimized
        call with the compiled function, so that subsequent calls are on
        the AOT compiled path.
        """
        compile_inputs = [
            inp if inp is not None else example_inputs[i]
            for i, inp in enumerate(fn.example_inputs)
        ]
        with tracing(TracingContext(fake_mode)):
            fn.optimized_call = vllm_backend(
                state["graph_module"], compile_inputs
            ).optimized_call
        return fn.optimized_call(*example_inputs)

    fn = cls(**state, optimized_call=optimized_call)
    return fn

serialize_compile_artifacts classmethod

serialize_compile_artifacts(
    compiled_fn: VllmSerializableFunction,
) -> bytes
Source code in vllm/compilation/caching.py
@classmethod
def serialize_compile_artifacts(
    cls, compiled_fn: "VllmSerializableFunction"
) -> bytes:
    import sympy
    from torch._subclasses import FakeTensorMode
    from torch.fx._graph_pickler import GraphPickler, Options

    state = compiled_fn.__dict__.copy()
    state.pop("optimized_call")
    state.pop("shape_env")
    state.pop("vllm_backend", None)
    for node in state["graph_module"].graph.nodes:
        node.meta.pop("source_fn_stack", None)
        node.meta.pop("nn_module_stack", None)
    for name, submod in state["graph_module"].named_children():
        if hasattr(submod, "graph"):
            for node in submod.graph.nodes:
                node.meta.pop("source_fn_stack", None)
                node.meta.pop("nn_module_stack", None)

    graph_reducer_override = GraphPickler.reducer_override

    def _graph_reducer_override(
        self: GraphPickler, obj: Any
    ) -> tuple[Callable[..., Any], tuple[Any, ...]] | Any:
        if (
            inspect.isclass(obj)
            and issubclass(obj, sympy.Function)
            and hasattr(obj, "_torch_unpickler")
        ):
            return obj._torch_unpickler, (obj._torch_handler_name,)
        if isinstance(obj, FakeTensorMode):
            return type(None), ()
        return graph_reducer_override(self, obj)

    if state.get("sym_tensor_indices"):
        # put tensor inputs on meta device since their data
        # isn't needed, yet we need the meta for make_copy_and_call
        state["example_inputs"] = pytree.tree_map_only(
            torch.Tensor,
            lambda inp: torch.empty_like(inp, device="meta"),
            state["example_inputs"],
        )
    else:
        # mask off all tensor inputs since they are large and not needed.
        state["example_inputs"] = pytree.tree_map_only(
            torch.Tensor,
            lambda inp: torch.empty_like(inp, device="meta"),
            state["example_inputs"],
        )
    with patch.object(GraphPickler, "reducer_override", _graph_reducer_override):
        state["graph_module"] = GraphPickler.dumps(
            state["graph_module"], Options(ops_filter=None)
        )
        state["example_inputs"] = GraphPickler.dumps(state["example_inputs"])

    if compiled_fn.vllm_backend:
        (
            standalone_compile_artifacts,
            sym_shape_indices_map,
            returns_tuple_map,
        ) = compiled_fn.vllm_backend.collect_standalone_compile_artifacts()
        state["standalone_compile_artifacts"] = standalone_compile_artifacts
        state["sym_shape_indices_map"] = sym_shape_indices_map
        state["returns_tuple_map"] = returns_tuple_map
    return pickle.dumps(state)

_compute_code_hash

_compute_code_hash(files: set[str]) -> str
Source code in vllm/compilation/caching.py
def _compute_code_hash(files: set[str]) -> str:
    logger.debug(
        "Traced files (to be considered for compilation cache):\n%s", "\n".join(files)
    )
    file_contents = {}
    for filepath in files:
        # Skip files that don't exist (e.g., <string>, <frozen modules>, etc.)
        if not os.path.isfile(filepath):
            file_contents[filepath] = ""
        else:
            with open(filepath) as f:
                file_contents[filepath] = f.read()
    return _compute_code_hash_with_content(file_contents)

_compute_code_hash_with_content

_compute_code_hash_with_content(
    file_contents: dict[str, str],
) -> str
Source code in vllm/compilation/caching.py
def _compute_code_hash_with_content(file_contents: dict[str, str]) -> str:
    items = list(sorted(file_contents.items(), key=lambda x: x[0]))
    hash_content = []
    for filepath, content in items:
        hash_content.append(filepath)
        if filepath == "<string>":
            # This means the function was dynamically generated, with
            # e.g. exec(). We can't actually check these.
            continue
        hash_content.append(content)
    result: str = safe_hash(
        "\n".join(hash_content).encode(), usedforsecurity=False
    ).hexdigest()
    return result

aot_compile_hash_factors

aot_compile_hash_factors(
    vllm_config: VllmConfig,
) -> list[str]
Source code in vllm/compilation/caching.py
def aot_compile_hash_factors(vllm_config: VllmConfig) -> list[str]:
    factors = []
    # 0. factors come from the env, for example, The values of
    # VLLM_PP_LAYER_PARTITION will affect the computation graph.
    env_hash = hash_factors(envs.compile_factors())
    factors.append(env_hash)

    # 1. factors come from the vllm_config (it mainly summarizes how the
    #    model is created)
    config_hash = vllm_config.compute_hash()
    factors.append(config_hash)

    # 2. inductor factors if applicable
    if envs.VLLM_USE_MEGA_AOT_ARTIFACT:
        factors.extend(get_inductor_factors())

    return factors

reconstruct_serializable_fn_from_mega_artifact

reconstruct_serializable_fn_from_mega_artifact(
    state: dict[str, Any],
    standalone_compile_artifacts: StandaloneCompiledArtifacts,
    vllm_config: VllmConfig,
    sym_shape_indices_map: dict[str, list[int]],
    returns_tuple_map: dict[str, bool],
) -> VllmSerializableFunction

Construct a VllmSerializableFunction from cached inductor artifacts.

This function reconstructs a callable model from pre-compiled inductor artifacts without re-running the compilation. It: 1. Loads all cached artifacts 2. Builds compiled callables for each submodule/shape 3. Creates PiecewiseBackend instances that dispatch to cached artifacts 4. Wraps with cudagraph if needed 5. Returns the final VllmSerializableFunction

Note: This function shares similar logic with PiecewiseCompileInterpreter in backends.py. Both create PiecewiseBackend instances and wrap them with cudagraph. The key difference is: - this function: PiecewiseBackend receives pre-compiled runnables (compiled_runnables is set, graph is None) - PiecewiseCompileInterpreter: PiecewiseBackend receives the FX graph to compile (graph is set, compiled_runnables is None)

If modifying the backend creation/wrapping logic, consider updating both.

Parameters:

Name Type Description Default
state dict[str, Any]

Deserialized state dict containing graph_module, example_inputs, prefix, sym_tensor_indices, is_encoder, etc.

required
standalone_compile_artifacts StandaloneCompiledArtifacts

The StandaloneCompiledArtifacts containing pre-compiled artifacts for each submodule/shape combination.

required
vllm_config VllmConfig

The vLLM configuration.

required
sym_shape_indices_map dict[str, list[int]]

Mapping from submod_name to sym_shape_indices.

required
returns_tuple_map dict[str, bool]

Mapping from submod_name to returns_tuple.

required

Returns:

Type Description
VllmSerializableFunction

A VllmSerializableFunction that can be called directly.

Source code in vllm/compilation/caching.py
def reconstruct_serializable_fn_from_mega_artifact(
    state: dict[str, Any],
    standalone_compile_artifacts: "StandaloneCompiledArtifacts",
    vllm_config: VllmConfig,
    sym_shape_indices_map: dict[str, list[int]],
    returns_tuple_map: dict[str, bool],
) -> "VllmSerializableFunction":
    """Construct a VllmSerializableFunction from cached inductor artifacts.

    This function reconstructs a callable model from pre-compiled inductor
    artifacts without re-running the compilation. It:
    1. Loads all cached artifacts
    2. Builds compiled callables for each submodule/shape
    3. Creates PiecewiseBackend instances that dispatch to cached artifacts
    4. Wraps with cudagraph if needed
    5. Returns the final VllmSerializableFunction

    Note: This function shares similar logic with PiecewiseCompileInterpreter
    in backends.py. Both create PiecewiseBackend instances and wrap them with
    cudagraph. The key difference is:
    - this function: PiecewiseBackend receives pre-compiled runnables
      (compiled_runnables is set, graph is None)
    - PiecewiseCompileInterpreter: PiecewiseBackend receives the FX graph
      to compile (graph is set, compiled_runnables is None)

    If modifying the backend creation/wrapping logic, consider updating both.

    Args:
        state: Deserialized state dict containing graph_module, example_inputs,
            prefix, sym_tensor_indices, is_encoder, etc.
        standalone_compile_artifacts: The StandaloneCompiledArtifacts containing
            pre-compiled artifacts for each submodule/shape combination.
        vllm_config: The vLLM configuration.
        sym_shape_indices_map: Mapping from submod_name to sym_shape_indices.
        returns_tuple_map: Mapping from submod_name to returns_tuple.

    Returns:
        A VllmSerializableFunction that can be called directly.
    """
    from vllm.compilation.backends import (
        VllmBackend,
        make_copy_and_call,
        wrap_with_cudagraph_if_needed,
    )
    from vllm.compilation.piecewise_backend import PiecewiseBackend

    prefix = state["prefix"]
    is_encoder = state.get("is_encoder", False)
    split_gm = state["graph_module"]
    compilation_config = vllm_config.compilation_config

    standalone_compile_artifacts.load_all()

    submod_names = standalone_compile_artifacts.submodule_names()
    compiled_callables: dict[str, dict[str, Callable[..., Any]]] = {}

    for cache_key in standalone_compile_artifacts.submodule_bytes:
        submod_name, shape_str = cache_key.rsplit("_", 1)
        compiled_callables.setdefault(submod_name, {})[shape_str] = (
            standalone_compile_artifacts.get_loaded(submod_name, shape_str)
        )

    vllm_backend = VllmBackend(vllm_config, prefix, is_encoder)
    dummy_cache_dir = os.path.join(envs.VLLM_CACHE_ROOT, "dummy_cache")
    os.makedirs(dummy_cache_dir, exist_ok=True)
    vllm_backend.compiler_manager.initialize_cache(
        cache_dir=dummy_cache_dir,
        disable_cache=True,
        prefix=prefix,
    )

    # spot check that cached submodules exist in the graph structure
    graph_children = {name for name, _ in split_gm.named_children()}
    missing = set(submod_names) - graph_children
    assert not missing, (
        f"artifacts reference submodules not in graph: {missing}. "
        f"graph has: {sorted(graph_children)}"
    )

    for i, submod_name in enumerate(submod_names):
        assert submod_name in sym_shape_indices_map and submod_name in returns_tuple_map

        sym_shape_indices = sym_shape_indices_map[submod_name]
        returns_tuple = returns_tuple_map[submod_name]
        runnables = compiled_callables[submod_name]

        piecewise_backend = PiecewiseBackend(
            graph=None,  # not needed for cached artifacts
            vllm_config=vllm_config,
            piecewise_compile_index=i,
            total_piecewise_compiles=len(submod_names),
            sym_shape_indices=sym_shape_indices,
            vllm_backend=vllm_backend,
            returns_tuple=returns_tuple,
            compiled_runnables=runnables,
        )

        is_first = i == 0
        is_last = i == len(submod_names) - 1
        wrapped_backend = wrap_with_cudagraph_if_needed(
            piecewise_backend,
            vllm_config,
            compilation_config,
            is_first,
            is_last,
        )

        split_gm.__dict__[submod_name] = wrapped_backend
        logger.debug(
            "Replaced submodule %s with piecewise backend from cache",
            submod_name,
        )

    if compilation_config.cudagraph_copy_inputs:
        sym_tensor_indices = state["sym_tensor_indices"]
        input_buffers = [
            torch.empty_like(
                state["example_inputs"][idx], device=vllm_config.device_config.device
            )
            for idx in sym_tensor_indices
        ]
        optimized_call = make_copy_and_call(sym_tensor_indices, input_buffers, split_gm)
    else:
        optimized_call = split_gm

    fn = VllmSerializableFunction(
        **state,
        optimized_call=optimized_call,
        vllm_backend=None,
    )
    return fn